AC Service Ground and Bonding Connections Part II

May 17, 2009

electricalLightning is responsible for more than $5 billion in total insurance industry losses annually, according to Hartford Insurance Company.

  Here in the Southwest the weather is struggling between winter and spring which brings heavy rains and torrential thunderstorms. These conditions increase the opportunity for electrical surges and spikes. The impact of these storms can cause both personal and property damage. Proper grounding and surge protection can  be your best defense.

Unplugging electronic devices was the old school method of protecting our electronics, however with more microprocessor based equipment that may be built-in or hardwired it becomes difficult to do that.  This can be good and bad. On the good side, this “smart” technology can allow our washing machines to weigh the clothes to determine how much water to use, to our sprinkler systems determining how moist the soil is before it waters our landscape. On the bad side, all of these electronic devices are highly susceptible to the negative effect of power surges and spikes. Any technology less than 10 years old can easily be a candidate for failure due to technological advances based on micro-processor based technology. With all that said, it becomes very important to protect all of these devices from electrical surges and spikes. Even if you live in an area with very little lightening, or thunderstorms, your equipment is still subject to utility and equipment based electrical surges. 

Even though most of us recognize electrical surges as they occur from outside sources, (severe storms, etc.) power fluctuations (or spikes)  from utility switching equipment and even equipment within our house have the ability to create power transients that can have an impact.  So, to properly protect you and your house, you may consider going beyond the typical power strip or point of use (POU) surge protector by having multiple layers of protection.  Obviously, equipment such as a Flat Panel TV, computer or audio equipment require point of use (POU) surge protectors but including  Surge Protection at the point of entry (electrical service panel) will also provide protection for items such as dishwashers, HVAC systems, microwave ovens, washers, dryers and so on.    

tt43kicamiqr72cajlxf3qcaqg2uy9cataa1tgcaozp5xycal1ce1jcanvsd5ycaf7gwszca1aq9vncaubtid9cayql0nrcav7a5t3ca26lasucaabxmn3ca179qr3cagr0p6uca5rqldfca8ochrrProper surge protection cannot be discussed without stressing the importance of  a grounding network for your house. My article on bonding & grounding covers how to identify and inspect your system, but the subject warrants a bit more discussion. The reality of the situation is that your household experiences electrical spikes and surges regularly even without a storm in sight and the source can be any incoming services (Commercial AC, CATV, Satellite TV and Telephone Service) as well as electrical appliances in your house. 

Both the National Electric Code (NEC) and National Institute of Standards recognize the importance of proper grounding  by providing recommendations and standards to increase this level of protection. Read the following articles before you go too much further. For your house to be properly protected, the integrity of the complete house is essential. Bonding and Grounding, Electrical Switches and Outlets (especially testing of the outlets). TIP:  Any outlet without proper grounding should not be used for any electrical equipment that requires protection even when you have a POU surge protector plugged in.

Ensure your grounding systems is up to par:

  1. Test all your outlets as mentioned above.
  2. If your house is over 30 years old and the electrical service has never been upgraded, the water pipe may be the only source of ground. Adding a ground rod would be a good idea at this point. Add the ground rod near the electrical service meter and a new wire between the rod and the ground termination bar in the service panel. It’s okay to leave the cold water pipe connection in tack. The grounding schematic  found below is considered a perfect world design. Creating this form of grounding arrangement will optimize your ground system.
  3. Grounding SchematicIf you have a ground rod and it is over 20 years old, it may be time add a new one. Underwriters Laboratory (UL) recognizes standard copper clad ground rod have a life expectancy of 20 years. If the electrical system has not been upgraded, replacing the ground rod will be cheap insurance.  Its perfectly okay to have multiple ground rods connected together in an array. 
  4. National Standards recognize ground systems with less than 5 ohms of resistance as being acceptable. Unless you live in a very dry climate or have known issues, testing an installed ground rod may not be necessary. If you are thinking you need to replace it,  it’s cheaper to just add it than have it tested.OYL94SCAGD0QOUCAYL04A3CAWYLBW6CAAH81G0CA0L2SH0CAHPGADSCAA7UEPWCAR3W6D8CAEFUGXNCAWGM712CAE6Z75SCAHKAUTPCAM64A17CAYGWHLQCAY41LE9CAXSYBESCAAW9HKRCASITYXC
  5. Ensure that all CATV, Telephone, Satellite services are collectively grounded at the same location as the AC service. TIP:  The closer these services are to each other and the shorter the ground wires used to connect them; the better.  Using the proper grounding hardware, the ground wires can be connected together at the ground rod, or you can use a collection device like the one pictured.    
  6. NEVER EVER connect a ground wire or ground rod to a natural gas pipe.
  7. As noted in the Grounding Bonding Post, having all the incoming services enter the building in the same general vicinity is most desirable.  TIP: With existing houses, these services may already be installed. If you are remodeling or building, keep this item in mind as you go through the process.   When the services all enter from different locations, surges may travel through the house to reach the intended ground source. Unfortunately in those type cases, this can increase the opportunity for the surge to follow an unintended path that may include passing through a television or computer.
  8. Following these items will reduce the risk and opportunity for surges and spikes, however damage from direct strikes are nearly unavoidable. 

 Odds Stacked Against You:  Having  a good ground system as mentioned above will protect you in most cases, however there are certain issues that will work against you. Some of the conditions you can change,  some not. Either way you need to be aware of them. 

  1. Tall structure; having the tallest structure in the general vicinity
  2. Having the largest or tallest trees in the area
  3. Large antennas, such as amateur radio
  4. Located near open water
  5. Older vintage building wiring systems that did not include proper or adequate grounding
  6. Living in an area served by aerial electrical, telephone or CATV lines
  7. Living in an older neighborhood with numerous tree’s in the utility easements
  8. A combination of any of the previously mentioned situations

I know this is a lot of information, but these grounding issues are regularly overlooked until a failure or problem has occurred. If you see the value of this, but its over your head, consult with an electrician about evaluating your system and performing the upgrades for you. My next article will cover the actual surge suppression devices (aka. TVSS). We will see the different classes of TVSS’s, where and how to apply them  and how to recognize a good one.  Look for my next post on Residential AC Surge Protection Using SPD’s and TVSS’s.

Advertisements

Seasonal Reminder – Spring To Do List

March 7, 2009

springSPRING HAS SPRUNG!!  Okay not everywhere. Here in my part of the country the daffodils have been out for about 4weeks. Yep, it got here early, so if your local temperatures are above freezing and the trees are starting to bud, it’s time to move forward… its inevitable. It’s time to fix all those items that broke during the winter months, repair the items that have deteriorated over the last few months and perform a little preventative maintenance around the house. This seasonal reminder  provides a list of items you need to review before the summer months set in. If you need details on what to look for or what to do, click on the link (if there is one) and it will take you to the post that was written on the subject and provide more detail.

  1. Heating/Cooling-Air Filters: Assuming you have a forced air system, change the filter prior to the heavy air conditioning months.
  2. Roofing-Looking For Leaks:  Spring rains are approaching so inspect your roof for leaks, trim away any tree limbs and clean debris off the roof. Look for raised nails and any breaches in the roof surface.
  3. HVAC Outdoor Unit: Get your garden trimmers out and trim away any vines or growth away from the  outside condenser. You should have 18″ to 2 100_0233feet clearance around the unit. Also take your water hose and wash down the outside coils  that may have accumulated dirt. Check the condensation drain that comes from the air handler in the house. Ensure that it is clear of obstacles or debris by pouring water through it.100_02311
  4. Water Leaks: Check all water fixtures and toilets for leaks. Inspect fixture drains for water puddles or loose joints in the traps.
  5. Lawn Sprinklers: Exercise the system. Look for excessive water traveling down the driveway or sidewalks. Inspect the sprinkler heads, look for blow-by and odd spray patterns. Replace or repair the heads.
  6. Exterior Inspection:  Walk around the house, look for rotted wood, peeling paint and other exposed surfaces. Use caulk to re-seal cracks and touch up paint to reseal the surfaces. Replace rotten wood as necessary.
  7. Interior Inspection: Winter dry-out will have caused some surface cracks around doorways and windows. Also  re-caulk/grout any cracks that may have surfaced in the bathroom and kitchen, especially around the tub and shower. These two areas experience the most use and require the most maintenance.  Replace or clean water filters, faucet strainers and vent-a-hood filters in the kitchen. Flush kitchen and bathroom sinks with scalding hot water for approximately 3-5 minutes.
  8. Water Heaters: Tank type water heaters should have their pressure release valve tested (opened and closed). This will also validate the the drain pipe is clear and open.
  9. Gutters and Downspouts: Clean you gutters of leaves and debris. Flush them with water to ensure they flow freely.
  10. Surface Water Drainage: Culverts, waterways, landscape drainage systems should be cleared of debris and overgrowth that may have occurred.100_0206
  11. Windows and doors: Look at the edges where the windows and doors connect to the house. Ensure the caulk is in good shape and add caulk as necessary, indoors and outdoors.
  12. Electrical Service: Inspect the Entrance, Mast and Weather-head. Look for any damage that may have occurred over the winter. Look for tree limbs that may be contacting the entrance cable.
  13. Electrical Service-Smoke Detectors: Clean your smoke detectors of cob webs and change the battery.
  14. Test your security system: Work with monitoring service to validate all the door, window, glass break, and motion sensors operate properly. 

If you are needing some additional information on one of the topics that I have not written about, let me know and I will put it higher on the list of articles to write. Email to HomeownerBOB@gmail.com


AC Service Ground and Bonding Connections

February 7, 2009

groundtermination Service Ground/Bonding Connections: Bonding and grounding are actually two subjects, but for the purpose of this article, “Bonding” serves to protect the individual from electrical shock where “Grounding” can provide a fault path for stray electrical current that might originate from a faulty electrical device or an electrical storm.  Both work hand in hand.

Near the meter base, there should be a small wire about the size of a small straw or bigger, connected to a metal (copper/copper clad) rod. The wire could be solid, stranded with a plastic sheath or bare copper. The AC Service Panel will dictate the size of this conductor.

Visually follow the wire to see where it goes.  This wire may go to a ground rod and/or  water pipe. Typically you should find a ground conductor attached to both as well as the electrical panel it self.  It should be firmly attached. Normally this ground wire should not have any electrical current passing through it and should be safe to touch. If the attachment is clean of corrosion and secure, no further action is required. If you find the conductor(s) cut, severed or disconnected, they must be reattached or replaced. If the conductor is completely severed, replacement is about your only choice as the NEC (National Electric Code) does not allow splicing of this conductor.  If the ground termination has signs of excessive corrosion, it should be cleaned and tightened. TIP: Clean the corrosion in the same method you would clean a automotive battery terminal. This is a very important part of the electrical system and its integrity is for your safety and your home. If you are unable to replace the conductor, hiring a professional is probably your only choice.

Coming from the telecommunications industry, bonding and grounding was near religion. Resources were dedicated to inspect, validate and correct grounding/bonding issues regularly in large facilities. Within that plan there was typically a grounding schematic detailing proper grounding/bonding for that office. Even though every office was different, the schematic was still the same.  As we bring more sophisticated electronics into our house, a similar method is being adopted for the house. If you are a real techno-nerd and have lots of electronic gizmo’s in your house, having your house well grounded  is imperative in ensuring your equipment works well and protected from faults that may occur.  Be sure and read AC Service Ground and Bonding Connections Part II Also if you are really bored look at this Surge Protectiondocument  from the National Institute of Standards and Technology (NIST).

With more electronics in the house, the National Electric Code (NEC) now includes the use of a bonding collection device in the current 2008 code for this purpose bringing all these ancillary grounding terminations to one location.  You will probably not have one of these devices in your house as will take the industry some time to catch up. Granted, you don’t need the device to comply with the code or complete a good grounding system but it does meet the specific need. 

Surges and faults are typically blamed on the electrical utility but in reality the Telephone and CATV are just as large of contributor.

You may find several ground terminations throughout your household associated with TV or Radio antennas, cable, satellite television and telephone services. Typically they will be attached to the ground system and/or the cold water pipe as this water pipe should be connected to the ground/bonding system. TIP: These devices might be connected at various locations in different ways, so don’t be surprised if you see them bonded to the AC Service Mast or piggy backed onto the ground wire with a stirrup or saddle clamp. Regardless of their location, their integrity is important to your safety and the safety of your home as well as the electrical equipment  you own.  Inspect these ground termination in the same respect as the electrical service grounding/bonding termination. In a perfect world all cables would attach to the same side of the house and the ground wires would be short and fairly straight and bringing them through the house to collect them would be avoided as any surge event will travel through the house to get to the other side and will reek havoc along the way on its search to the ground source.

With the increased use of highly sensitive electronics found in the home, proper grounding is becoming even more important. Look for a future article on surge protection and TVSS devices.

Key Inspection Points and Corrective Action

  1. Visually check the ground conductor(s) for physical integrity.
  2. If the conductor is completely severed, it must be replaced.
  3. Visually inspect all ancillary connections (cable, telephone, etc.).
  4. Are all ground terminations clean, secure and tight? Excessive corrosion at the terminations should be cleaned.  

 

 

 


Electrical Service-Panel

January 18, 2009

The electrical service panel would be considered the heart of the electrical system. A properly sized, correctly wired panel will serve the electrical needs of the home for many years. Proper care and inspection will reduce the potential of system level problems and failures.

 

electrical-service-panel1If you have many of today’s modern conveniences such as a dishwasher, clothes washer, dryer, electric heat and air-conditioning, your service is likely 100 Amps or greater. If your house has anything smaller than 100 Amps, upgrading  your service to 150 Amps or greater is highly recommended. If you have very few of the items mentioned, the inspection covered in this section may or may not reveal immediate problems associated with a small panel, but as you add more electrical devices, you will start to see issues that are discussed in this topic.

Look at the table below to help determine what level of electrical service panel you may have. Generally speaking, service panels are not well marked to provide you an exact rating number, but the fewer positions the lower the rating. More positions typically equates to larger service. This is all based on the assumption that the panel is supplied with large enough cables in the first place. If you live in an older house, don’t be surprised if you have add-on panels that are used to provide additional capacity, if they are installed correctly there should not be any problems. If you question the cable sizes, have an electrician look at the panel for greater clarity.

 

servicepanelchart-fullinit_

 

With our increased dependency on electricity, the minimum acceptable size of AC service panels has slowly increased over the years. If your house is in category A or B with the original AC service panel, upgrading to a 150 Amps or greater can be a wise decision, as adding additional circuits will be problematic. In fact, some insurance companies may not issue or renew a policy because of the fire risk associated with the smaller panels.

INSPECTING THE PANEL

With relative ease, and a tool or two, the homeowner can inspect the electrical service panel to identify conditions that may warrant further investigation or repair. Additionally, if you would like to analyze your AC requirements, send me an email and I can forward you an spreadsheet to calculate your AC demand. This will provide you a general reference of demand vs. capacity.

Visual Inspection: This level of inspection is performed with no more than the door open. No screwdrivers or tools should be required to expose the face of the panel. There should not be any exposed wires at this point. Your service panel should (generally) resemble this picture (for a panel newer than 1960). Look at the general condition of the panel.

  1. The door should open and close without difficulty or obstruction.
  2.  The panel should fit snug to the adjacent wall. No gaping holes around the panel face around the Sheetrock or wall covering. If you find conduit or Jacketed Metal Conduit (JMC) leaving the sides of the panel, this is okay assuming the electrical conductors are not exposed.
  3. With the door open, look for missing knockout where breakers may have been removed. TIP: Home centers have plastic filler plugs to cover these holes. 
  4.  No standing water, corrosion or signs of water in the panel is acceptable. Call an electrician for resolution.
  5. Look at all the breakers for deformation, if they look melted or are no longer holding their original shape, they should be replaced. This can also be an indication the breaker has or is exceeding its limitation.

Heat and your AC Service Panel: Heat generated by the electrical service panel is an indication of potential problems that may result in an interruption of service. Heat can be recognized in a couple of different ways. 1) by touch or, 2) or digital  infrared thermometer.  If you don’t own a digital thermometer, they can be purchased for a reasonable price ($15 to $100) over the Internet or discount tool supply. The digital thermometer will be referenced throughout HomeownerBOB and its a great addition to your tool box. You will find lots of uses for it.inferred-thermometer

Before you look for heat issues, try to answer these questions.

  1.  Have you noticed that you regularly trip breakers?
  2. Does it occur at a certain time of the day?
  3. Does it occur when you use specific appliances such as a vacuum cleaner or hair dryer?
  4. Is it the same breaker(s) that have to be regularly reset?

If you answer yes to any of these questions, it’s a good decision to replace the breaker(s) now. All breakers have a service life and can deteriorate over time due to frequent tripping or heavy loads. Large commercial breakers can be tested and repaired, but it is more economically feasible to replace residential breakers if there is any question of their reliability. Furthermore, this will further the isolation process of the breaker if it continues to trip.

  1. Test by Touch: Without a digital thermometer, you can place a finger on the face of the plastic breakers. TIP Look for temperature differential. If you find an individual breaker noticeably warm, and it has been tripping, you may have an issue, so have the breaker changed out. If you already changed it out and it is still warm, the load on the circuit is probably high. If the breaker has not been tripping, no further action is required. Just make a note in your inspection journal and look for a change from one inspection to the next.
  2. Test by Infrared Thermometer: TIP: Look for temperature differential. If you find 25% in temperature difference between the hottest breaker and the coolest, and it is not tripping, log it in your home inspection journal.
  3. Tripping Breakers: If the breaker has started tripping, replace it first, then try the following trick to resolve the issue if it continued to trip after replacement. TRICK: Identify everything plugged into this circuit and try moving some appliances to other circuits to de-load this one. If you can live with this change, you have solved the issue, no further action is required. If it’s not a convenient arrangement, you may need to hire an electrician to re-associate some outlets to different circuits. This can get expensive, but it will take an on-site analysis to figure it out. Regardless, re-associating the circuit should solve the problem.

Testing and Exercising Circuit Breakers:Some professionals recommend circuit breaker testing by switching breakers on/off 5 consecutive times once per year. HomeownerBOB considers this optional. If the service panel is over 10 years old and breakers were never exercised for test, cycling them may actually cause some deterioration. TIP: Determine the brand and style of the breakers and buy a couple of the most common sizes (15, 20’s and 30’s are the most popular) and keep them for an emergency. If you choose to exercise the circuit breakers in the future, you will have ready access to a replacements. If the house is fairly new, exercise them if you wish.

Service Panel and Breaker Caution:  If your service panel is a Federal Pacific brand, some municipalities require them to be replaced. FPE Panel Controversy.

gfci-breaker GFCI Circuit Breakers:These special breakers will look different than a standard breaker as it includes a test and reset button, just like a GFI (ground fault interruption)outlet. In newer houses the electrician may wire an entire bathroom or all the kitchen circuits as GFCI in lieu of installing individual GFI outlets. You may also use an outlet tester with a GFI  testing feature to trip the breaker. Either way will work but HomeownerBOB prefers to test at the outlet as this allows you to associate the outlets with the breaker. See Outlets and Switches.

afci-breakerAFCI Circuit Breakers:  AFCI  breakers may look like a GFCI, both will be properly labeled to identify the difference. Arc Fault Circuit Interruption breakers are designed to prevent fires based on an arc flash that could occur in an electrical appliance. Read their full description in US Gov. AFCI doc for more information. Since 2002, the NEC has required these breakers be used with all bedroom circuits. TIP: These breakers can be quite sensitive and may trip for no apparent reason. If your inspection finds no fault, the breaker has been replaced and it continues to trip, you may consider having an electrician evaluate the circuit. Even though HomeownerBOB cannot recommend the removal and replacement of this breaker with nothing other than the same breaker, there have been cases where replacement with a traditional standard breaker has solved the problem without issue. 

Replacing Breakers: There are many links on how to change out a circuit breaker. Here is just one. Replace a circuit breaker.  If you are replacing your own breakers, they should ALWAYS be replaced with a like-for-like size and rating of the breaker being removed. NEVER up-size a breaker because it continues to trip. If you replaced the breaker because it was hot and it is still hot or it continues to trip. Make a note in your inspection journal. If it starts to trip over the year, follow the testing isolation method described above. The NEC (National Electric Code) allows for residential grade breakers to supply up to 80% of their rating. So in other words, if you have a 20 Amp breaker, the actual measured load should not exceed 16 Amps (1920 Watts) at any one time.


Electrical Service-Safety

January 12, 2009

effects-of-electshockElectrical Inspections may be a bit scary for the novice; it will be up to you to determine if the inspection is within your abilities. All inspections  will be non-intrusive. If you have ANY doubts, don’t do it, call a professional. As a safety precaution, never touch any live exposed wires with your hands or any metal objects.  Never stand in water or have wet hands when making inspections. All inspections identified by HomeownerBOB can be performed visually.

As you can see by the chart, it doesnt take much to cause damage to the human body. To put it in perspective, a blow dryer used to dry hair uses somewhere between 900 and 1500 watts of power. Converted to Amps puts it off the chart at approximately 7 to 13 amps.

Be careful and always err on side of safety.


Electrical Service-Meter Base

January 10, 2009

electrical-meter-baseThe mast/conduit will typically penetrate the roof and attach to a meter base. Depending on the area,  the meter base is usually serviced and maintained by the local electric utility. At the meter base, there may be another conduit that feeds into the electrical service panel located here outside the building. It can be different from one utility to the next but typically they will maintain items one and six of the items depicted on the sketch. The homeowner is normally responsible for everything else. Hire a professional licensed electrician to perform any work on these items.meter-base-diagram2

Key Inspection Points

Inspect for physical integrity. If there is any physical damage noted that would allow water or varmints inside the enclosure, notify your electric utility.


Electrical Service-Weatherhead

January 8, 2009

electweatherheadLook at the weather head on the tip of the mast. It should be intact and in one piece. Look for conductors to potentially be rubbing exposd metal surfaces here. If they are rubbing or have been rubbing (even if the plastic is not rubbed through) this situation needs to be corrected as this could cause a service outage as well as be a safety issue. As you can see in the picture of the weather head, the plastic sheath has rubbed off and is exposing the aluminum conductor. Even though the weather head is isolated from the metal structure with a rubber insulator, water could create an electrical path between metallic surfaces causing a electrical short. This condition should be addressed by a licensed electrician.

Key inspections and action items:

  1. Visually inspect the service drop entrance into the weather head for wear, distortion or damage.
  2. Contact an electrician for correction.